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Abstract

In this day and age, compilers are used in more places than one would immediately consider. While pro-
grammers heavily rely on them to get their work done in a reasonable amount of time, as the alternative of
writing assembly by hand is a tremendously time consuming not to mention risky feat in terms of security,
a significant amount of time that could otherwise have been spent being productive is spent waiting on
the compiler to finish, hence the productivity in the field of software development stands to benefit from
improved efficiency. Likewise, scripting languages that used to be run by interpreting source text chunks at
a time are now being translated to raw machine instructions immediately prior to execution just to squeeze
out fractions of performance benefits on computers. As Moore’s law seems to be nearing its natural limit
as dictated by the laws of our universe, even the faintest reduction in compile-time will stand to benefit
the runtime performance of an entire class of programming languages. Therefore this paper will seek to
implement and evaluate the approach most often used in ahead-of-time compilation seeking to benefit the
former, as well as the approach most often used in cases of just-in-time compilation for the latter.
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1 Introduction

Compilation refers to the process of translating from one language to another, most often from a high-level
programming language intended for humans to work with, to machine- or bytecode intended to be executed
on a target architecture. This process can be divided into several distinct phases, which are grouped into one
of two stages colloquially referred to as the frontend and backend (see Figure 1). The former is translating
a high-level programming language to an intermediate representation (IR) and the latter is translating IR
to executable machine code of a target architecture or bytecode of a target virtual machine (VM).
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Figure 1: Compiler phases, backend highlighted

Most operations of a general-purpose programming language are translated to a set of control, logic, and
arithmetic instructions to be executed sequentially on a computer processor: a single circuit/chip, referred
to as the central processing unit (CPU), the design of which has varied and evolved over time.

Most CPUs are register machines, in that they use a limited set of general-purpose registers (GPRs)
to store working values in combination with random access memory (RAM) for mid-term, and other I/O
peripherals for long-term storage. This can largely be attributed to performance, as register machines
routinely outperform stack machines [1] that are often used in virtual machines (VMs). Although register
machines generally also have a stack available, as being limited to mere bytes of storage is simply infeasible
for most large scale applications, using it compared to GPRs is orders of magnitudes slower [2]. Because of
this, a crucial part of the backend stage for an optimizing compiler is assigning each variable of the source
program to a GPR in such a way that maximizes performance without sacrificing correctness.

The process of assigning each variable to a GPR is referred to as register allocation, and can be ap-
proached in several different ways. This paper will seek to implement graph coloring and linear scan and
evaluate them in terms of runtime performance after compilation. The primary sources are Modern Compiler
Implementation in ML [3] and Compilers: Principles, techniques, and tools [4] with regards to static analysis
and graph coloring, in addition to Linear Scan Register Allocation [5] concerning linear scan.

The implementation is written in OCaml for the most part, although Python has been put to use to
generate further tests parameterized over some set of value as well as an attempt to further assert the
correctness of translation.

2 Intermediate Representation

Although compilers can feasibly translate from the source language to machine code of the target architecture
directly, which could even be more efficient, doing so hinders the portability as machine code targeting
architecture A isn’t necessarily useful for targeting architecture B further down the line.

Instead of translating directly from a source language to target machine code, most compiler frontends
emit IR which is intended as an abstraction over CPU architectures. It is by no means executable on either
A or B, but it is much closer to the instruction set executed on a CPU than the source language originally fed
to the frontend. This helps portability immensely, as a frontend emitting an IR no longer needs to specialize
to a particular architecture, instead it can target as many as the backend supports. Likewise, a compiler
backend will support any frontend provided that they emit correct IR.
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Because of this, compilation of high-level programming languages will often go no further than emitting
IR, then leave the rest for a subsequent backend implementation. This naturally leads to the LLVM toolchain,
which is by far the most used compiler backend in practice. Most languages, if targeting native execution on
a CPU, will have an LLVM implementation. This is true for C/C++ (Clang compiler [6]), D (LDC compiler
[7]), Swift (official Swift compiler [8]) and Rust (official rustc compiler [9]) to name a few. In fact, the use
of LLVM allows for them to be compiled to completely unforeseen and unintended targets, like web browsers
with WebAssembly or even graphics cards with compute kernels [10].

Conversely, managed languages such as Java and C# target their own respective VMs, so they typically
don’t have much to gain from the LLVM toolchain. That said, some projects have attempted to implement
LLVM in their translation of bytecode to native architectures, such as LLILC which promised both just-
in-time (JIT) as well as ahead-of-time (AOT) compilation [11]. Similarly, Kotlin (the spiritual successor to
Java) that ordinarily targets the JVM has a native backend that compiles directly to machine code using
LLVM, circumventing the need for a VM entirely [12].

For example, the add function implemented in C as seen in Figure 2 is compiled to the LLVM IR as seen
in Figure 3 after stripping optimization/debug attributes with the strip utility. At this level of complexity
they are largely equivalent, with the primary difference appearing to be syntactic. LLVM IR keeps the typed
binary operations as well as the function construct with a return statement, although the variable names are
discarded as IR is generally not for human interaction, except the function name, as this is used for linking
with other object files where the symbol naming is used to look up offsets.

int add(int a, int b) {
int sum = a + b;
return sum;

}

Figure 2: Arithmetic function implemented in C

define i32 @add (i32 %0, i32 %1) {
%3 = add i32 %1, %0
ret i32 %3
}

Figure 3: Stripped clang -O1 -S -emit-llvm

.text

.globl add # -- Begin function add
add: # @add

movl %esi, %eax
addl %edi, %eax
retq

Figure 4: Output of clang -S without debug markers

When the IR is translated to x86 as seen in Figure 4, the virtual variables %0, %1 and %2 are assigned the
registers %esi, %edi and %eax respectively. This is presumably because of several optimizations, as %rdi
and %rsi are used to pass the first and second parameters and the %rax as the return value according to
the System V AMD64 ABI [13], so by assigning the variables to those, several movs are saved. Either way,
the assignment is sound and the instruction selection is reasonably close to the source code. There are other
changes as well, as marking the target section with .text and the .globl annotation to export add in the
symbol table which permits linking with other object files, but that isn’t stricly related to register allocation.

2.1 Static Single-Assignment form
In compiler backends, Static Single-Assignment (SSA) form is a property that applies to some IR, including
LLVM. It is a way of representing a program such that each variable is assigned only once in the scope of
a function. Each use of the variable after definition then refers to the value of that single assignment, and
any operations are applied by assigning the result of said operation to a freshly defined variable.

This property eliminates redefinitions entirely, making it easier to reason about data flow and in turn
also speed up analysis. It’s important to note that SSA form itself doesn’t inherently mandate immutability,
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despite only allowing for single assignment. Rather, it has two approaches to mutable variables: the phi
nodes and load/store operations.

Building on the earlier example, consider multiplication as implemented in Figure 5. Translated to LLVM
IR with no optimization can be seen in Figure 7, which achieves mutability by allocating a variable on the
stack (lines 2-5), loading the value on use and storing on reassignment. This means new values are loaded
and assigned upon reentering a block, without reassigning the value of the source variable, which points to
whatever slot was available at the time of definition.

extern int add(int a, int b);

int mul(int a, int b) {
int product = 0;
for (int i = 0; i < a; i++) {

product = add(product, b);
}
return product;

}

Figure 5: Multiplication function implemented in C

declare i32 @add(i32, i32)

define i32 @mul (i32 %0, i32 %1) {
%3 = icmp sgt i32 %0, 0
br i1 %3, label %6, label %4
4:
%5 = phi i32 [0, %2], [%9, %6]
ret i32 %5
6:
%7 = phi i32 [%10, %6], [0, %2]
%8 = phi i32 [%9, %6], [0, %2]
%9 = call i32 @add (i32 %8, i32 %1)
%10 = add i32 %7, 1
%11 = icmp eq i32 %10, %0
br i1 %11, label %4, label %6
}

Figure 6: Stripped clang -O1 -S -emit-llvm

define i32 @mul (i32 %0, i32 %1) {
%3 = alloca i32
%4 = alloca i32
%5 = alloca i32
%6 = alloca i32
store i32 %0, i32* %3
store i32 %1, i32* %4
store i32 0, i32* %5
store i32 0, i32* %6
br label %7
7:
%8 = load i32, i32* %6
%9 = load i32, i32* %3
%10 = icmp slt i32 %8, %9
br i1 %10, label %11, label %18
11:
%12 = load i32, i32* %5
%13 = load i32, i32* %4
%14 = call i32 @add (i32 %12, i32 %13)
store i32 %14, i32* %5
br label %15
15:
%16 = load i32, i32* %6
%17 = add i32 %16, 1
store i32 %17, i32* %6
br label %7
18:
%19 = load i32, i32* %5
ret i32 %19
}

Figure 7: Stripped clang -O0 -S -emit-llvm

Another approach is that of Figure 6, which uses so-called ’phi nodes’ instead. These are a type of instruction
that evaluates to a specified operand depending on which predecessor block was executed immediately prior.
This circumvents the need for the same level of mutability as is achieved by reading/writing to memory,
without violating the properties of SSA, by copying a value from the end of a predecessor to the beginning
of the current block. A phi node represents a point in the program where the control flow merges, and it
selects the appropriate version of a variable based on the path taken. This ensures that the data flow is
well-defined and allows for easy analysis across different control flow paths.

3 Control Flow Analysis

The backend of a compiler takes some form of IR as input, usually a linear sequence of instructions for
each separate function. This representation is close to the level of an actual processor by design, but it
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isn’t immediately useful for the further analysis steps needed to generate optimized code for the target
architecture. The control flow of a given program refers to the order in which instructions are executed.
While the flow of most instructions is linear, in the sense that the next instruction executed is located
immediately after, some transfer the flow of execution elsewhere or outright terminate it.

A continuous flow of instructions is referred to as a basic block, defined as a sequence of instructions with
no branches in or out except for the first instruction (referred to as a leader, immediately following either
the function entry or label within it) and the last (referred to as a terminator, as it either terminates or
transfers the flow of execution). In order to represent the order in which instructions are executed, a control
flow graph (CFG) is introduced. It is a directed graph whose edges represent transfer of control. The type of
node varies over the source material, with CFGs of the Appel text [3] constructed over individual instructions
and the Aho text [4] over basic blocks. This project has opted to only use the Appel approach. One of the
benefits is greater precision, in that several variables may be used in the same block and be assigned the
same register as long as the two are not in interference within it. This wouldn’t be possible with the Aho
approach which completely discounts which parts of the block it is used in. Either way, leaders will have a
set of predecessors and terminators a set of successors associated with them.

Terminators have one or two successors in the case of branching or none at all in the case of function exit.
Unconditional branching always transfers control to the block labelled, meaning only one successor follow,
whereas conditional branching could transfer to either of the two, but because control flow analysis is not
concerned with data, both are considered as possible successors. Successors of node n are denoted succ[n],
and while each node also has a set of predecessors associated, which consists of an unbounded number of
nodes from which control may be transferred, it isn’t particularly useful in the following analysis.

3.1 Building a Control Flow Graph
Building a graph is relatively straight forward, with the input for every function declared parsed as a tuple
type named cfg of the form:

type cfg = (lbl option * block) * (lbl * block) list

which consists of an optionally named entry block in the first part and a list of trailing blocks that are always
named in the second. The reason for the first block to be optionally named is the fact that some LLVM
programs transfer control back to the point of entry, whereas every subsequent block needs to be named
because branching can only target it by referring to its name. Strictly speaking, this isn’t how labels are
treated in LLVM. Instead each block is always named, if not explicitly then by the next unused value from
the same counter as temporaries [14], but this was discovered too late in development to account for.

From this, a CFG is constructed using the OCamlgraph library [15], which provides several approaches
with various structures, but the one used in this case is Imperative.Digraph.Abstract where the
index is parameterized over int which corresponds to the index of the instruction starting at 0 for the
first instruction to be executed. At first, a graph is constructed with the input flattened such that labels,
instructions and terminators are represented as a continuous sequence as opposed to the basic blocks that is
parsed from the input.

let flatten ((head, tail) : Ll.cfg) : insn list =
let label l = Label l and insn i = Insn i in
let block (b : Ll.block) = List.map insn b.insns @ [ Term b.terminator ] in
let named_opt (n, b) = (Option.map label n |> Option.to_list) @ block b in
let named (n, b) = Label n :: block b in
named_opt head @ (List.map named tail |> List.flatten)

This is done to simplify lookup of which graph vertex corresponds to the nth instruction/terminator. Labels,
while present in the flattened list, aren’t considered as they have no inherent function other than labelling
the leader instruction to branch to.

1 let graph ((head, tail) : Ll.cfg) : G.V.t array * G.t =
2 let insns = flatten (head, tail) |> List.mapi (fun i n -> (i, n)) in
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3 let verts = Array.init (List.length insns) G.V.create in
4 let addbl t = function i, Label l -> S.ST.add l verts.(i + 1) t | _ -> t in
5 let blocks = List.fold_left addbl S.ST.empty insns in
6 let g = G.create () in
7 Array.iter (G.add_vertex g) verts;
8 let addterm i = function
9 | Ll.Ret _ | Unreachable -> ()

10 | Br lbl -> G.add_edge g verts.(i) (S.ST.find lbl blocks)
11 | Cbr (_, l1, l2) ->
12 G.add_edge g verts.(i) (S.ST.find l1 blocks);
13 G.add_edge g verts.(i) (S.ST.find l2 blocks)
14 | Switch (_, _, _, lbls) ->
15 let vert l = S.ST.find l blocks in
16 List.map snd lbls |> List.map vert |> List.iter (G.add_edge g verts.(i))
17 in
18 let addedges = function
19 | _, Label _ -> ()
20 | i, Insn _ -> G.add_edge g verts.(i) verts.(i + 1)
21 | i, Term term -> addterm i term
22 in
23 List.iter addedges insns;
24 (verts, g)

As can be seen above, instructions always have one edge to the instruction/terminator immediately following,
while terminators can have any number of edges (0 for ret and unreachable, 1-2 for br and an unbounded
number for switch).

4 Liveness Analysis

Translating IR with an unbounded number of variables to a CPU with a bounded number of registers
involves the process of assigning each variable a register such that no value that may be needed in the future
is overwritten. Variables that are in use at a given program point are considered live, and although variables
can be assigned the same register, variables that are live at the same time (i.e. at intersecting program
points) cannot, in which case they are also said to be in interference with one another. Variables that are
not in interference can be assigned the same register, and finding the precise points at which any variable
is live is trivial for linear sequences of instructions. However, when conditional branching is introduced,
deriving the path of execution becomes undecidable.

For instance, consider a function that calls another:

1 define i32 @countcall(i32 %x0) {
2 %x1 = add i32 %x0, 1
3 call void @printInt(i32 %x1)
4 call ptr @subproc()
5 ret i32 %x1
6 }

Figure 8: Increment, print and possibly return argument

Because of the halting problem, static analysis cannot necessarily determine if the call to @subproc will
return. So when assigning %x1 a register it is undecidable whether the variable must be live in the return
instruction on line 5 in Figure 8. A register must be assigned to %x1, as it is used on line 3, although whether
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it must live across function calls can reduce the possible registers depending on the target platform and its
calling conventions. Because of this, any sound approach to liveness analysis will be an approximation.

In some cases it is simply impossible to assign each variable its own register without conflict along
interference edges, in which case one or more variables need to be assigned to memory instead. This is also
referred to as spilling the variable/register to the stack, or the variable itself is referred to as spilled.

A sound albeit very naive approach is to consider every variable live at every program point, such that
every variable is in interference with one another, producing a fully connected interference graph. This
forces every variable to be assigned a different register, which is a viable approach for small programs with
fewer variables than the set of assignable registers. Such a heuristic is greedy in the sense that it picks an
assignment known to be safe for the least amount of preprocessing possible. However, this can be a very
inefficient assignment at runtime. When the number of variables is greater than the number of assignable
registers, a variable must be spilled. A number of n variables greater than k working registers causes n− k
variables to be spilled, which can greatly reduce performance, but allows for translation in linear time.

4.1 Dataflow Analysis
Another approach, which is a more precise approximation, is a specific variant of the dataflow analysis as
described in Modern Compiler Implementation in ML [3] and Compilers: Principles, Techniques, and Tools
[4]. In general, dataflow analysis is the process of finding the possible paths in which data may propagate
through various branches of execution. While several applications of this exist (like constant propagation,
reaching defnitions, available expressions etc.), one that is immediately beneficial in the case of liveness
analysis is one that traverses a CFG in the reverse order of execution (i.e. backwards flow), and extracts any
variable that may be used in execution (also referred to as backwards may analysis).

This algorithm calculates which program points each variable may be accessed from with some con-
servative constraints known to maintain correctness. Specifically, these are the transfer and control-flow
constraints. The transfer constraint is based on a transfer function [4, p. 599] that describes how liveness
is affected across instructions. For each instruction, there is a transfer function that describes how liveness
changes from one point to the one immediately after. For example, as an arithmetic operation needs to be
assigned a new temporary variable, the liveness of a new variable is propagated to all instructions executed
subsequently. This is done by applying the transfer function to the current live-out set to stop further
propagation of variables defined by the currently visited instruction:

in [n] = use [n] ∪ (out [n]− def [n]) (1)

with the use[n] set being defined as any variables that may be used and the def [n] as the set of variables
defined in node n. The def [n] either consists of one variable or equal to ∅. The use[n] set is effectively
unbounded as some instructions take any m variables as parameters.

Control-flow constraints, on the other hand, propagate the use of variables to previously executed in-
structions, expecting these to be defined somewhere further up the CFG. This is done by propagating the
union of the live-in set associated with all immediate successor nodes. This is also referred to as the meet
operator [4, p. 605], whose operator depends on the type of dataflow analysis as well, but for liveness analysis
a union is performed on the live-in sets of any successive nodes:

out [n] =
⋃

s∈succ[n]

in [s] (2)

Initially, two empty sets are associated with each instruction: the live-in and live-out sets, which are the sets
of variables that are live respectively before and after execution. Then the two equations above are applied
iteratively until a fixed point is reached, i.e. an invariant point where neither in[n] or out [n] is changed for
all instructions n.

The simplest equations to implement are the def and use functions, as all of the values of interest are
located immediately within the instruction itself and not hidden behind some layer of indirection:

1 let def (s : S.SS.t) (insn : Cfg.insn) =
2 match insn with Insn (Some dop, _) -> S.SS.add dop s | _ -> s

6



3

4 let use (s : S.SS.t) (insn : Cfg.insn) =
5 let op o s = match o with Ll.Id i -> S.SS.add i s | _ -> s in
6 let po = Fun.flip op in
7 match insn with
8 | Insn (_, AllocaN (_, (_, o))) (* | Bitcast _ | ... | Zext _ *) ->
9 op o s

10 | Insn (_, Binop (_, _, l, r)) (* | Icmp _ | Store _ *) ->
11 op l s |> op r
12 | Insn (_, Call (_, _, args)) -> List.map snd args |> List.fold_left po s
13 | Insn (_, Gep (_, bop, ops)) -> List.fold_left po (op bop s) ops
14 | Insn (_, Select (c, (_, l), (_, r))) -> op c s |> op l |> op r
15 | Insn (_, PhiNode (_, ops)) -> List.map fst ops |> List.fold_left po s
16 | Term (Ret (_, Some o) | Cbr (o, _, _)) -> op o s
17 | _ -> s

Where S.SS is a Set.S module built over the Symbol.symbol type found in lib/symbol.ml. The
flowin function corresponds to the live-in equation (1) and is implemented as follows:

1 let flowin (i, insn) =
2 let newin = S.SS.union (use insn) (S.SS.diff out.(i) (def insn)) in
3 let changed = not (S.SS.equal newin in_.(i)) in
4 if changed then in_.(i) <- newin;
5 changed

And the flowout function which corresponds to the live-out equation (2) implemented as follows:

1 let flowout (i, _) =
2 let newout =
3 let succ = Cfg.G.succ g ids.(i) in
4 List.fold_left
5 (fun s v -> S.SS.union s in_.(Cfg.G.V.label v))
6 S.SS.empty succ
7 in
8 let changed = not (S.SS.equal newout out.(i)) in
9 if changed then out.(i) <- newout;

10 changed

The set operations are applied as you would with the S.SS.t struct, the only interesting part is noting
whether changes were made, as this is needed further down in execution. The actual dataflow analysis
performed recursively as follows:

1 let dataflow (insns : Cfg.insn list) (ids : Cfg.G.V.t array) (g : Cfg.G.t) =
2 let insns = List.mapi (fun i v -> (i, v)) insns |> List.rev in
3 let in_ = Array.init (List.length insns) (fun _ -> S.SS.empty) in
4 let out = Array.init (List.length insns) (fun _ -> S.SS.empty) in
5 let rec dataflow () =
6 let flowout = (* ... *)
7 let flowin = (* ... *)
8 let flow changed insn = changed || flowout insn || flowin insn in
9 if List.fold_left flow false insns then dataflow () else (in_, out)

10 in dataflow ()

Figure 9: Overall implementation of dataflow
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One particularly noteworthy thing is reversing of the flattened list of instructions on line 2 of Figure 9. After
enumerating each entry so that the corresponding vertex can be looked up in the ids array, it is reversed.
The motivation for this is the fact that the out [n] of node n depends on in[s] for all successors s. Since most
nodes only have one immediate successor, populating this first is significantly more efficient.

Consider a simple program like Figure 10 that only prints integers incrementally up until argc, in
LLVM-- that would consist of one loop with one phi node as seen in Figure 11.

1 #include <stdio.h>
2

3 int main(int argc, char **argv) {
4

5 for (int i = 1; i <= argc; i++) {
6 printf("%d!\n", i);
7 }
8

9 return 0;
10 }

Figure 10: cat tests/count.ll

1 define i32 @main (i32 %0, i8* %1) {
2 %3 = icmp slt i32 %0, 1
3 br i1 %3, label %4, label %5
4 4:
5 ret i32 0
6 5:
7 %6 = phi i32 [%8, %5], [1, %2]
8 %7 = call i32 (i8*, ...) @printf (i8* @.str, i32 %6)
9 %8 = add i32 %6, 1

10 %9 = icmp eq i32 %6, %0
11 br i1 %9, label %4, label %5
12 }

Figure 11: Stripped clang -O1 -S -emit-llvm

If one were to note the in[s] and out [s] sets for each instruction s for each iteration, one would arrive at
Tables 1 and 2. The number of iterations is nearly halfed when reverseing the list of instructions prior to
dataflow analysis as can be seen on how many columns are present in each.

i use def in out in out in out in out in out in out in out
0 0 3 0 3 0 3,8 0,8 3,8 0,8 3,8 0,8 0,3,8 0,8 0,3,8 0,8 0,3,8
1 3 3 8 3,8 8 3,8 8 3,8 0,8 0,3,8 0,8 0,3,8 0,8 0,3,8 0,8
2
3
4 8 8 8 8 8 8 0,8 0,8 0,8 0,8 0,8 0,8 0,8
5 8 6 8 6 8 6 8 0,6 0,8 0,6 0,8 0,6 0,8 0,6 0,8 0,6
6 6 7 6 6 6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6
7 6 8 6 0,6 0,6 0,6 0,6 0,6 0,6 0,6,8 0,6 0,6,8 0,6 0,6,8 0,6 0,6,8
8 0,6 9 0,6 9 0,6 9 0,6 8,9 0,6,8 8,9 0,6,8 8,9 0,6,8 0,8,9 0,6,8 0,8,9
9 9 9 9 8 8,9 8 8,9 8 8,9 0,8 0,8,9 0,8 0,8,9 0,8

Table 1: Output of dune exec build -- -t lva -v tests/count1.ll

i use def in out in out in out in out in out in out in out in out in out in out in out
0 0 3 0 0 3 0 3 0 3,8 0,8 3,8 0,8 3,8 0,8 3,8 0,8 3,8 0,8 3,8 0,8 0,3,8 0,8 0,3,8
1 3 3 3 8 3,8 8 3,8 8 3,8 8 3,8 8 3,8 8 3,8 0,8 0,3,8 0,8 0,3,8 0,8 0,3,8 0,8
2
3
4 8 8 8 8 8 8 8 8 8 8 8 8 0,8 0,8 0,8 0,8 0,8 0,8 0,8
5 8 6 8 8 6 8 6 8 6 8 6 8 0,6 0,8 0,6 0,8 0,6 0,8 0,6 0,8 0,6 0,8 0,6
6 6 7 6 6 6 6 6 6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6
7 6 8 6 6 0,6 0,6 0,6 0,6 0,6 0,6 0,6,8 0,6 0,6,8 0,6 0,6,8 0,6 0,6,8 0,6 0,6,8 0,6 0,6,8 0,6 0,6,8
8 0,6 9 0,6 0,6 9 0,6 8,9 0,6,8 8,9 0,6,8 8,9 0,6,8 8,9 0,6,8 8,9 0,6,8 8,9 0,6,8 0,8,9 0,6,8 0,8,9 0,6,8 0,8,9
9 9 9 8 8,9 8 8,9 8 8,9 8 8,9 8 8,9 8 8,9 0,8 0,8,9 0,8 0,8,9 0,8 0,8,9 0,8 0,8,9 0,8

Table 2: Output of dune exec build -- -t lva -v -r tests/count1.ll
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This is unnoticeable for snippets of marginal size like most examples included, but when applied to functions
with a significant amount of def-use paths, it can be quite consequential. For tests/sha256.ll for
instance, the running time of this analysis is effectively doubled (see Figure 12).

$ time dune exec build -- tests/sha256.ll -t lva -r
36,11s user 0,06s system 99% cpu 36,213 total
$ time dune exec build -- tests/sha256.ll -t lva
18,02s user 0,05s system 99% cpu 18,090 total

Figure 12: Runtime over single representative run of liveness analysis

4.2 Building an Interference Graph
The purpose of conducting dataflow analysis as above is finding variables that may be assigned the same
register. This is done by building an interference graph, which is an undirected graph, whose nodes represent
variables and edges that signify interference between them, i.e. variables a and b live at intersecting program
points is represented with an edge (a, b).

The construction of an interference graph only depends on the live-out set and type of instruction. If
the instruction defines a variable, said variable is in interference with all variables in the live-out set. There
is one exception however: according to the Appel text, move instructions (i.e. phi nodes in the case of SSA
form) are given special consideration. The purpose of phi nodes is to copy/move a certain value from a
certain predecessor, so they are not necessarily in conflict for being live at the same time. Rather it would
often benefit if they were assigned the same register to spare unnecessary moves.

Because of this, for any phi node of the form

a = Φ(b1, ..., bn) (3)

add edges to all live-out variables not in {b1, ..., bn}

∀bj ∈ out [i] \ {b1, ..., bn}, add_edge(a, bj),

and for any other instruction that defines a variable a

∀bj ∈ {b1, ..., bn}, add_edge(a, bj).

Although the Appel text [3] describes interference of variables with concrete registers as well as overlapping
variables, this isn’t considered in this implementation for simplicity’s sake.

Again the OCamlgraph library is used, but this time Imperative.Graph.Abstract is parameterized
over the aforementioned set type S.SS.t. Such that several variables can be assigned to the same node
(more on this in section 5.2). A helper function is defined, that looks up a variable’s symbol in the symbol
table over vertices and adds it if it doesn’t exist. Otherwise it simply returns the existing vertex identifier:

1 let vert g e t =
2 match S.ST.find_opt e t with
3 | Some v -> (v, t)
4 | None ->
5 let v = S.SS.add e S.SS.empty |> G.V.create in
6 G.add_vertex g v;
7 (v, S.ST.add e v t)

Then the interference graph is derived in Figure 13. First, all parameters are connected, then the instructions
are processed as described in the Appel text [3, p. 222]. As phi nodes are the only mov instructions, their
interference edges are out [n] \ {b1, ..., bn} (see (3)) as opposed to non-move instructions that are just out [n].
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1 let interf (params : Ll.uid list) (insns : Cfg.insn list) _ (out : S.SS.t array) =
2 let g = G.create () in
3 let vert2 t e = vert g e t |> snd and vert3 e t = vert g e t |> snd in
4 let edge s1 s2 t =
5 let v1, t = vert g s1 t in
6 let v2, t = vert g s2 t in
7 if v1 <> v2 then G.add_edge g v1 v2;
8 t
9 in

10 let t = List.fold_left vert2 S.ST.empty params in
11 let param t p1 =
12 let param t p2 = if p1 <> p2 then edge p1 p2 t else t in
13 List.fold_left param t params
14 in
15 let t = List.fold_left param t params in
16 let setverts t s = S.SS.fold vert3 s t in
17 let t = List.map (def S.SS.empty) insns |> List.fold_left setverts t in
18 let ids = function Ll.Id id -> Some id | _ -> None in
19 let defoutedges t (i, n) =
20 let defs = def S.SS.empty n in
21 let out =
22 match n with
23 | Cfg.Insn (_, Ll.PhiNode (_, ops)) ->
24 List.map fst ops |> List.filter_map ids |> S.SS.of_list
25 |> S.SS.diff out.(i)
26 | _ -> out.(i)
27 in
28 let outedge e1 t = S.SS.fold (edge e1) out t in
29 S.SS.fold outedge defs t
30 in
31 let t = List.mapi (fun i n -> (i, n)) insns |> List.fold_left defoutedges t in
32 (t, g)

Figure 13: Overall implementation of interf

For instance, the LLVM-- program of Figure 14, a simple handwritten program that counts down from
%argc, would translate the interference graph of Figure 15.

define i32 @main (i32 %argc, i8** %argv) {
entry:
br label %loop

loop:
%c1 = phi i32 [%argc, %entry], [%c2, %loop]
call void @printf (i8* @fmt, i32 %c1)
%c2 = sub i32 %c1, 1
%cn = icmp sgt i32 %c2, 0
br i1 %cn, label %loop, label %exit

exit:
ret i32 0

}

Figure 14: cat tests/countdown.ll

argc cn

argv c1

c2

Figure 15: dune exec build -- -t dot
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5 Graph Coloring

Once an interference graph is constructed, the actual assignments can be found using graph coloring. Graph
coloring is a problem in graph theory where the goal is to assign colors to the vertices of a graph in such
a way that no adjacent vertices are assigned the same color. A graph that can be colored using k different
colors is referred to as k-colorable and the minimum number of colors needed to be assigned is also called its’
chromatic number. Although this problem is known to be NP-complete [3, p. 229], [4, p. 510], the heuristic
as introduced in both the Appel [3, p. 229], and Aho et al. [4, p. 557] texts, is a linear time approximation
to this problem as described below.

5.1 Coloring by simplification
The simplification algorithm, also known as Chaitin’s algorithm [16], is an iterative approach wherein nodes
known to be colorable are removed and pushed to a stack until either an empty graph remains, in which
case the original graph is k-colorable, or nodes with more than k neighbours remain. In this case a node
is chosen to be spilled after which the process is started over. This is repeated until every node has been
removed successfully, after which the vertices are assigned by popping them from the stack. Each of these
are known to be k-colorable because of the earlier criteria of having less than k neighbors.

To perform the simplification algorithm on the previous example of Figure 14, its interference graph seen
on Figure 15 only has one node of degree 4 with the ones remaining all being ≤ 2. This wouldn’t be a
problem on modern day processors most of which have ~16 or so GPRs, but for the sake of clearness one
can imagine a register machine of k = 2 working registers.

If at first a single node of insignificant degree (i.e. < 2) is selected, it is then removed and pushed to
a stack. In Figure 15 only %argv and %c1 are of insignificant degree, so either of those is chosen to be
removed (represented with dashed borders and edges) as can be seen on Figure 16a and 17a and pushed to
the stack of variables to be colored as can be seen on Figure 16b and 17b.

%argc %cn

%argv %c1

%c2

(a) Graph

%c1

(b) Stack

Figure 16: Push %c1

%argc %cn

%argv %c1

%c2

(a) Graph

%argv
%c1

(b) Stack

Figure 17: Push %argv

%argc %cn

%argv %c1

(a) Graph (b) Stack

Figure 18: Spill %c2

From this point on nothing can be done to further simplify the graph as all of the remaining nodes are of
significant degree (≥ 2). Therefore, one of the remaining nodes is spilled to memory and entirely removed
from the graph as can be seen on Figure 18a and the stack reset as can be seen on Figure 18b.

%argc %cn

%argv %c1

(a) Graph

%cn

(b) Stack

Figure 19: Push %cn

%argc %cn

%argv %c1

(a) Graph

%argv
%cn

(b) Stack

Figure 20: Push %argv

%argc %cn

%argv %c1

(a) Graph

%argc
%argv
%cn

(b) Stack

Figure 21: Push %argc

After spilling %c2, the process is repeated. First by pushing %cn (Figure 19a and 19b), then %argv (Figure
20a and 20b) and finally %argc (Figure 21a and 21b). One thing of note is the fact that the order in which
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this is happening is irrelevant, so long as variables pushed are of insignificant degree. For instance, %argc
was of degree 3 in Figure 18a, but as more and more of its neighbors are pushed its degree decreases to a
point where only %argc and %c1 are yet to be pushed to the stack.

%argc %cn

%argv %c1

(a) Graph

%c1
%argc
%argv
%cn

(b) Stack

Figure 22: Push %c1

%argc %cn

%argv %c1

(a) Graph

%argc
%argv
%cn

(b) Stack

Figure 23: Pop %c1

%argc %cn

%argv %c1

(a) Graph

%argv
%cn

(b) Stack

Figure 24: Pop %argc

As the last variable %c1 is pushed in Figure 22 and an empty graph remains, the process of reconstructing
the graph can begin. When popping %c1 in Figure 23, it can be assigned any of the two colors as it has no
neighbors adjacent, so either is chosen. On the other hand, when assigning %argc, it’s only adjacent neighbor
%c1 is already assigned red so only blue remains. Likewise, for %argv and %cn their only immediately
adjacent neighbor of %argc causes them to be assigned red as can be seen on Figure 25 and 26.

%argc %cn

%argv %c1

(a) Graph

%cn

(b) Stack

Figure 25: Pop %argv

%argc %cn

%argv %c1

(a) Graph (b) Stack

Figure 26: Pop %c1

The final coloring of Figure 26 leads to the assignment

assign[%argv] = assign[%c1] = assign[%cn] = %red

assign[%argc] = %blue

and the spilled variable %c2
assign[%c2] = stackslot(0)

5.2 Coalescing
Coalescing is the process of eliminating moves/copies of data from one GPR to another by combining their
interference graph nodes. This is similar to but not the same as the lack of interference edges between
variables that are subject to move operations. This is because variables a and b may still be assigned
different registers or even spilled if, for instance, either of them are of significant degree.

Coalescing joins nodes a and b to node ab preserving the edges of both to maintain soundness. Since all
edges are preserved, the resulting node ab may be of a much higher degree. Because of this, only strategies
that produce a k-colorable graph are worth considering, as additional spills negate the purpose entirely. One
of the strategies introduced in the Appel text is the Briggs strategy [3, p. 232], in which nodes a and b can
be coalesced iff the resulting node ab has ≤ K nieghbors of significant degree (i.e. ≥ K).

Since the only move operations in use in LLVM-- are phi nodes, only variables that are subject to this
sort of operation are eligible to be coalesced in this form. Variables that can be coalesced can be thought
of as having a preference edge, and any nodes with such an edge stand to benefit from coalescing, but this
may only be done if they are not in interference.

Consider the previous example (Figure 14): when applied with the same k = 2 nothing happens regardless
of which allocator is used (see Figure 27 which was generated using the briggs allocator). This is because
although the %c1 and %c2 nodes are not in interference, both neighbors of %c2 are of significant degree
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(deg(%cn) = 2 ≥ 2 and deg(%argc) = 3 ≥ 2). Therefore they don’t satisfy the Briggs criteria, and are
not coalesced, resulting in the same interference graph as the simple allocator in Figure 15. But for some
k ≥ 2, now there are fewer than k significant neighbors of %c2 (and %c1), meaning the two can be coalesced,
with the resulting node %c1, %c2 having two neighbors of insignificant degree as can be seen in Figure 28.

argcargv

c1c2cn

Figure 27: build -- -t dot -a briggs -n 2

argcargv

c1, c2cn

Figure 28: -a briggs -n 3

The purpose is only to assign the same registers to different variables, which generally stands to benefit from
less mov instructions being used.

5.3 Implementation
The first step is deriving all preference edges:

1 let prefer (insns : Cfg.insn list) : S.SS.t S.ST.t =
2 let insn t = function
3 | Cfg.Insn (Some d, Ll.PhiNode (_, ops)) ->
4 List.fold_left
5 (fun t o ->
6 match o with
7 | Ll.Id sop, _ ->
8 S.ST.update sop
9 (function

10 | Some s -> Some (S.SS.add d s)
11 | None -> Some (S.SS.singleton d))
12 t
13 | _ -> t)
14 t ops
15 | _ -> t
16 in
17 List.fold_left insn S.ST.empty insns

Figure 29: Implementation of prefer in lib/coalesce.ml

This is done simply by iterating over all of the instructions, and for every phi node, add a preference edge
between a on the left-hand side of (3) and all bi on the right. Of note is the fact that only operands of the
form %i (i.e. Id variants of the operand type) are considered. This is because immediate values may also
be specified in an LLVM phi node, whose mov instruction don’t make sense to eliminate.

Briggs coalescing is then implemented as follows:
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1 let coalesce_briggs k (prefs : S.SS.t S.ST.t)
2 ((l, g) : Lva.G.V.t S.ST.t * Lva.G.t) : Lva.G.V.t S.table * Lva.G.t =
3 let try_coalesce sop dop (l, g) =
4 if not (Lva.G.mem_edge g (S.ST.find sop l) (S.ST.find dop l)) then
5 let sneighs = S.ST.find sop l |> Lva.G.succ g |> Lva.VS.of_list
6 and dneighs = S.ST.find dop l |> Lva.G.succ g |> Lva.VS.of_list in
7 let neighs = Lva.VS.union sneighs dneighs in
8 let sign v = Lva.G.succ g v |> List.length >= k in
9 let signeighs = Lva.VS.filter sign neighs in

10 if Lva.VS.cardinal signeighs < k then
11 coalesce (S.ST.find sop l) (S.ST.find dop l) (l, g)
12 else (l, g)
13 else (l, g)
14 in
15 let try_pref sop dops (l, g) = S.SS.fold (try_coalesce sop) dops (l, g) in
16 S.ST.fold try_pref prefs (l, g)

Figure 30: Implementation of coalesce_briggs in lib/coalesce.ml

For every preference edge, attempt to coalesce them into one. The try_coalesce function is applied to
every pair (a, b) for all Φ-nodes. At first whether a and b are in conflict is checked, because only nodes that
are not in interference may be coalesced, and if they are there is no point in finding their neighbors. The
degree of potential node ab is taking all of the neighbors of a and b, and if the union of these is of magnitude
≥ k it doesn’t satisfy the Briggs criteria and no further action is taken. If it is < k, i.e. node ab is of
insignificant degree, the two are combined in the coalesce function.

The following is a very tedious implementation, stemming from the the ocamlgraph library simply
doesn’t support contracting a graph. Instead one is directed towards constructing a new graph and copying
over the vertices and edges in that order. This is done by first folding over all existing vertices, adding the
one’s that are not in the process of being coalesced, and when the first of the pair being coalesced is met,
set the third tuple entry to be some, the associated data being the vertex identifier as well as it’s associated
symbols. Each vertex maps to a symbol set (i.e. S.SS.t) of variables already coalesced which is initially a
singleton.

1 let coalesce v1 v2 (st, g) =
2 if v1 = v2 then (st, g)
3 else
4 let g' = Lva.G.create () in
5 let st', vt', _ =
6 Lva.G.fold_vertex
7 (fun v (st, vt, jn) ->
8 if v = v1 || v = v2 then (
9 match jn with

10 | None ->
11 let s = Lva.G.V.label v in
12 (st, vt, Some (v, s))
13 | Some (v1, s1) ->
14 let s' = Lva.G.V.label v |> S.SS.union s1 in
15 let v' = Lva.G.V.create s' in
16 Lva.G.add_vertex g' v';
17 ( S.SS.fold (fun e l -> S.ST.add e v' l) s' st,
18 Lva.VT.add v1 v' vt |> Lva.VT.add v v',
19 None ))
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20 else
21 let s = Lva.G.V.label v in
22 let v' = Lva.G.V.create s in
23 Lva.G.add_vertex g' v';
24 ( S.SS.fold (fun e st -> S.ST.add e v' st) s st,
25 Lva.VT.add v v' vt,
26 jn ))
27 g
28 (S.ST.empty, Lva.VT.empty, None)
29 in
30 Lva.G.iter_edges
31 (fun v1 v2 ->
32 let v1 = Lva.VT.find v1 vt' in
33 let v2 = Lva.VT.find v2 vt' in
34 if v1 <> v2 then Lva.G.add_edge g' v1 v2)
35 g;
36 (st', g')

Figure 31: Implementation of coalesce in lib/coalesce.ml

6 Linear Scan

Another approach that depends on liveness analysis is the linear scan algorithm. It is a simple and efficient
approach that performs a linear pass over IR to produce a register assignment significantly faster than the
steps involved with graph coloring. That said, it may generate more imprecise assignments and therefore
also be less performant at runtime, so the utility depends on the context in which it is used.

While compilers like clang generally has an end-goal of machine code, languages like C# and Java will
target a VM instead. This is done for a myriad of reasons, portability and security among them, but usually
at the cost of runtime performance. One of the reasons for this is the fact that VM bytecode needs to
be processed beforehands. While bytecode is generated ahead-of-time, running it on a target machine by
interpreting such instructions in real time is inefficient. Therefore, bytecode is generally translated to native
machine code immediately prior to being executed, a process known as just-in-time (JIT) compilation.

A significant downside of JIT is the fact it needs to be compiled in full before execution can begin,
hence processes such as register allocation are deferred to runtime. Therefore, generally a faster class of
allocators are used, linear scan being one of them, as linear scan is a reasonably performant alternative to
graph coloring, that may be used to achieve reasonably efficient register assignments at runtime.

The primary text is Linear Scan Register Allocation [5], the application of which also relies on prior
liveness analysis. Given liveranges, assignments are easily derived from only one pass through IR. Similar to
graph coloring, given k available GPRs, it assigns as many variables as possible, and spills the rest.

It does this by first building the intervals using the in[s] and out [s] resulting from prior dataflow analysis.
By keeping a list of active variables, on reaching the beginning of a new interval whith k variables already
active, one of them need to be spilled such that the starting interval can be assigned a register. It could be
chosen at random but that could be costly, instead some spilling heuristic is applied.

Total time spent during compilation is somewhere around those listed in Figure 32.
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$ time dune exec build -- tests/sha256.ll -a greedy
38,72s user 0,07s system 99% cpu 38,833 total
$ time dune exec build -- tests/sha256.ll -a linear
38,72s user 0,04s system 99% cpu 38,813 total
$ time dune exec build -- tests/sha256.ll -a simple
120,55s user 0,07s system 99% cpu 2:00,74 total
$ time dune exec build -- tests/sha256.ll -a briggs
119,86s user 0,05s system 99% cpu 2:00,03 total

Figure 32: Runtime over single runs of compilation

6.1 Spilling heuristics
The spilling heuristic can vary, but the one mentioned in the paper is chosen from remaining length, as in
‘furthest away from the current point’ [5, p. 900]. The same decision was made for this implementation, as
it does stand to reduce the amount of spills necessary. See The program of Figure 34 and its associated live
ranges/intervals of Figure 33. For a target of k = 2, upon reaching the start of interval %5, one variable
needs to be spilled. If either %3 or %4 are chosen, in the case of %3 being spilled, already upon reaching %7
another needs to be spilled. In case of %4, two variables won’t be live simultaneously until %8. Nonetheless,
that means two spills instead of spilling the longest interval of %5.

%3
%4
%5

%7
%8

Figure 33: Live intervals

1 define i32 @main (i32 %0, i8* %1) {
2 %3 = getelementptr i8*, i8** %1, i64 1
3 %4 = load i8*, i8** %3
4 %5 = call i32 @atoi (i8* %4)
5 call i32 @printf (i8* @.str, i8** %3, i8* %4, ...
6 %7 = call i32 @isqrt (i32 %5)
7 %8 = call i64 @strtoll (i8* %4, i8* null, i32 10)
8 call i32 @printf (i8* @.str.1, i32 %5, i64 %8)
9 call i32 @printf (i8* @.str.2, i32 %7, i32 %5)

10 ret i32 %5
11 }

Figure 34: @main of tests/linear.ll

6.2 Implementation
At first, intervals are derived from the flattened instruction sequence and associated in[n] and out [n] sets.
While this can be done in a single pass with some creative array indexing, my approach relies on two passes:
one for finding the start points (see Figure 35), the other for finding the end points.
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1 let add e = function
2 | Some s -> Some (S.SS.add e s)
3 | None -> Some (S.SS.singleton e)
4 let intervalstart insns (in_, out) =
5 let insn (ordstarts, starts, active) (i, _n) =
6 let out' = S.SS.diff (S.SS.union in_.(i) out.(i)) active in
7 ( S.SS.fold (fun e a -> IT.update i (add e) a) out' ordstarts,
8 S.SS.fold (fun e a -> S.ST.add e i a) out' starts,
9 S.SS.union active out' )

10 in
11 List.fold_left insn (IT.empty, S.ST.empty, S.SS.empty) insns

Figure 35: Implementation of intervalstart in lib/linear.ml

Of note are the structures over which the folding is done: the IT.t is a Map.S module indexing earlier
described symbol sets (i.e. S.SS.t). The reason for doing this is to iterate through intervals in increasing
and decreasing order of start/length and end points respectively. The symbol table (S.ST.t) is to allow
for reverse lookup, i.e. which program point variable s is defined, and lastly the symbol set (i.e. S.SS.t)
which is just there to prevent multiple start points for the same variable.

1 let intervalends insns (in_, out) =
2 let insn (i, _n) (ordends, ends, active) =
3 let in' = S.SS.diff (S.SS.union in_.(i) out.(i)) active in
4 ( S.SS.fold (fun e a -> IT.update i (add e) a) in' ordends,
5 S.SS.fold (fun e a -> S.ST.add e i a) in' ends,
6 S.SS.union active in' )
7 in
8 List.fold_right insn insns (IT.empty, S.ST.empty, S.SS.empty)

Figure 36: Implementation of intervalendsintervalstart in lib/linear.ml

The opposite, i.e. finding the interval ends, is quite similar (see Figure 36), with the only real difference
being the use of List.fold_right instead of List.fold_left to reduce the function body in reverse.

1 let rec linearscan insns spills (avail, active, assign, incstart, incend) =
2 match IT.min_binding_opt incstart with
3 | Some (i, ss) ->
4 let e = S.SS.choose ss in
5 let ss' = S.SS.remove e ss in
6 let incstart' =
7 if S.SS.is_empty ss' then IT.remove i incstart
8 else IT.add i ss' incstart
9 in

10 let spills, (avail', active', assign', incstart', incend') =
11 match Regs.choose_opt avail with
12 | Some reg ->
13 ( spills,
14 expire i
15 ( Regs.remove reg avail,
16 S.ST.add e reg active,
17 S.ST.add e (Reg reg) assign,
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18 incstart',
19 incend ) )
20 | None ->
21 let _j, spill =
22 IT.filter
23 (fun _k v -> S.SS.exists (fun e -> S.ST.mem e active) v)
24 incend
25 |> IT.max_binding
26 in
27 let spill =
28 S.SS.filter (fun e -> S.ST.mem e active) spill |> S.SS.choose
29 in
30 let reg = S.ST.find spill active in
31 let incend' =
32 IT.filter_map
33 (fun _ ss ->
34 let ss' = S.SS.remove spill ss in
35 if S.SS.is_empty ss' then None else Some ss')
36 incend
37 in
38 ( spills + 1,
39 expire i
40 ( avail,
41 S.ST.remove spill active |> S.ST.add e reg,
42 S.ST.remove spill assign
43 |> S.ST.add spill (stack spills)
44 |> S.ST.add e (Reg reg),
45 incstart',
46 incend' ) )
47 in
48 linearscan insns spills (avail', active', assign', incstart', incend')
49 | None -> expire (List.length insns) (avail, active, assign, incstart, incend)

Figure 37: Implementation of linearscan in linear.ml

The implementation of the actual linearscan iteration in Figure 37 is quite tedious, but the core idea is the
outerermost match block. The smallest interval is selected using min_binding_opt. This is done to visit
each interval in increasing order of start point. If there are none left, the linearscan iteration is essentially
over, but calls expire regardless to clean things up. The case of intervals remaining is more interesting,
as one of the variables starting at i needs to be assigned. First a variable is chosen, the order of this is not
important. Despite the minimal example used in Figure 34, there are cases where several intervals begin
at the same point (e.g. loops), hence a symbol set is used. Lines 6-8 are just concerned with removing the
chosen variable from the table of increasing start points. Then, an available register is chosen. If one is
available (line 12), it is 1) removed from the set of available registers, 2) added to the symbol table of active
variables, and 3) assigned the same register in the returned assignments table. If no registers are available
on the other hand (line 20), a variable needs to be spilled. It does this by first filtering through and only
visiting the end points that are currently active (i.e. members of active). Then the one of intervals that
are currently active with the greatest end points is chosen by first filtering end points for which at least of the
variables is active (lines 22-25), and then selecting one of those immediately after (line 28). The currently
assigned register of that variable is then looked up (line 30) and the end point is removed (lines 32-36).

In the case of spilling, the idea is to 1) remove the previously assigned variable with the greatest remaining
length from the active set, 2) assign the previously assigned variable to the nextmost available stack slot,
and 3) assign the currently visited start interval to the register just unassigned from the spilled variable.
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In either of those cases, the expire function is called right after. This is to ensure that there are no
dangling variables left in the table of increading end points, and that their previously assigned registers are
put back in the available set of registers as can be seen in Figure 38.

1 let rec expire i (avail, active, assign, incstart, incend) =
2 match IT.min_binding_opt incend with
3 | Some (j, end_) ->
4 if j >= i then (avail, active, assign, incstart, incend)
5 else
6 let s = S.SS.choose end_ in
7 let reg = S.ST.find s active in
8 let active' = S.ST.remove s active in
9 let avail' = Regs.add reg avail in

10 let incend' = IT.remove j incend in
11 expire i (avail', active', assign, incstart, incend')
12 | None -> (avail, active, assign, incstart, incend)

Figure 38: Implementation of expire in lib/linear.ml

Putting it all together, is the alloc function in lib/linear.ml that builds the set of available registers
from the k passed, builds the increasing interval starts and ends tables, and finally, begins the iteratice
process of linear scan.

1 let alloc k insns (in_, out) =
2 let avail = List.init k reg_of_int |> Regs.of_list in
3 let insns = List.mapi (fun i n -> (i, n)) insns in
4 let incstart, _, _ = intervalstart insns (in_, out) in
5 let incend, _, _ = intervalends insns (in_, out) in
6 let _, _, asn, _, _ =
7 linearscan insns 0 (avail, S.ST.empty, S.ST.empty, incstart, incend)
8 in asn

Figure 39: Implementation of alloc in lib/linear.ml

7 Instruction Selection

7.1 LLVM-- instruction set
The instruction set used in this paper will be a combination of those used in the 2022 and 2023 compilers
courses in order to work as a drop-in replacement of LLVM for either of the two respective source languages:
Tiger and Dolphin. This instruction set is a subset of the one used in practice, as, for instance, neither of the
languages implemented support interrupts, floating point operations etc., and instead only strive to cover
the basics of compilers. In addition some other instructions are also included, like trunc and switch , to
widen the range of supported frontend languages with the clang compiler.

7.2 Translating LLVM-- to x86
Translating each IR instruction to x86 correctly is a matter of eliminating unintended side-effects. Each
LLVM-- instruction generally only serves one specific function, as concepts such as calling conventions, stack
frames, or a FLAGS register are completely abstracted over in order to remain platform independent.

In contrast, the x86 instruction set architecture (ISA) is targeting a complex instruction set computer
(CISC) family of processors, the instructions of which perform a much broader set of operations [3, p. 190].
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This is in part due to pipelining, i.e. an abstraction over the concrete implementation of the actual processor,
which in turn is made for the sake of performance.

Another more concrete example of this would be the division/remainder operation: since integer division
is a non-trivial iterative process wherein both the quotient and remainder is needed throughout, the result
of both of these is stored in the %rax and %rdx registers respectively. This means two operations are
performed simultaneously regardless of which value is used, hence they need to be restored before executing
the next instruction, as any variables assigned to %rax or %rdx will be overwritten.

To map each LLVM-- instruction to what amounts to the ’core’ function in x86, consider Table 3.
Instructions for which the size varies, the suffix is denoted with x instead. This is then replaced with the
appropriate size suffix depending on the type noted in the LLVM-- instruction. For example, most binary
operations move the left-hand operand into %rax and the right-hand operand into %rcx, after which the
associated instruction from the table is performed. For x86, most operations are done in place, so for the
most part %rax is modified and moved to the destination after.

LLVM-- x86 Registers affected
add addx %src, %dst {}
alloca subq $n, %rsp {%rsp}
allocan subq $n, %rsp {%rsp}
and andx %src, %dst {}
ashr sarx %src, %dst {}
bitcast movx %src, %dst {}
call see 7.2.1 {%rax, %rcx, %rdx, %rsi, %r8-%r11}
gep see 7.2.2 {}
icmp cmpx, set {%rFLAGS}
load movx (%src), %dst {}
lshr shrx %src, %dst {}
mul imulx %src, %dst {%rax}
or orx %src, %dst {}
phi see 7.2.3 {}
ptrtoint movx %src, %dst {}
sdiv idivx %src, %dst {%rax, %rdx}
select cmpx, cmoveq {%rFLAGS}
sext movx %src, %dst {}
shl shl %src, %dst {}
srem idivx %src, %dst {%rax, %rdx}
store movx %src, (%dst) {}
sub subx %src, %dst {}
trunc movx %src, %dst {}
udiv divx %src, %dst {%rax, %rdx}
urem divx %src, %dst {%rax, %rdx}
xor xorx %src, %dst {}
zext movx %src, %dst {}

Table 3: LLVM-- instruction to x86 translation table

7.2.1 Translating call instructions

The call operation is by far the most complicated one. Mostly because of calling conventions, caller saved
registers listed in Table 3 need to be saved/restored before/after all. This isn’t necessary in all functions,
only those where the registers are actually used (which ought to be a simple lookup in the assignments table),
but is not accounted for in this implementation. Instead they are all saved/restored regardless of use this
could also be further optimized by simply subtracting from %rsp and moving them to their respective stack
locations manually, instead of using push/pop. Additionally, the %rax register is zeroed before every call as
its lowermost byte register %al is used to indicate the number of variadic arguments [13, p. 25]. This isn’t
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actually accounted for, instead it is just set to zero regardless. Furthermore, the way in which arguments are
passed is also unnecessarily convoluted, but stems from a corner case in which variables were overwritten by
moving to the respective register of the n function argument. This can be remedied by ordering the movs
correctly, and even in the case where there are cycles and movs cannot be made without overwriting at least
one, one of the scratch registers can be used instead. But as a workaround for this, the arguments are simply
pushed from the source operands and popped to their respective argument registers (in reverse order).

7.2.2 Translating getelementptr instructions

GEP instructions are used to perform address calculations for accessing elements in structures or arrays.
They are particularly useful for efficiently addressing elements in complex data structures. For example,
code accessing fields like line 8 in Figure 40, would translate to the snippet seen in Figure 41.

1 typedef struct {
2 char c;
3 int x;
4 int y;
5 } vector;
6

7 void dot(vector *a, vector *b) {
8 a->x += b->x;
9 a->y += b->y; // -------->

10 }

Figure 40: Subfield access

1 ; ...
2 %6 = getelementptr %struct.vector,
3 %i8* %1, i64 0, i32 2
4 %7 = load i32, i32* %6
5 %8 = getelementptr %struct.vector,
6 %i8* %0, i64 0, i32 2
7 %9 = load i32, i32* %8
8 %10 = add i32 %9, %7
9 store i32 %10, i32* %8

10 ; ...

Figure 41: clang -O1 -S -emit-llvm

Essentially gep instructions allow for unbounded array lookups, in that a getelementptr instruction is
followed by the base address and one or more scaled offsets. What happens in Figure 41 is vector type is
reduced to an int array, because it essentially is: in C, struct fields are generally padded such that their
respective memory addresses are aligned on four- or eight-byte boundaries [17]. As such, accessing the third
field entry corresponds to accessing the third element of an int array. The getelementptr instruction
gets the pointer of this element by multiplying the size with the index and adding that to the base address.
Therefore, the x86 that is generated essentially amounts to an imul instruction as can be seen in Figure 42.

1 ; ...
2 movq %rdi, %rcx
3 movq $0, %rax
4 addq %rax, %rcx
5 imulq $8, %rax
6 movq $2, %rax
7 imulq $4, %rax
8 addq %rax, %rcx
9 ; ...

Figure 42: dune exec build -- -t x86

where the base register %1 has assignment assign[%1] = %rdi is moved into the scratch register %rcx, and
each of the offset operands are 1) moved into the other scratch register %rax, 2) multiplied by the size of
their respective types, and 3) added to the base register.

Unfortunately, gep wasn’t implemented properly in time for handin. Instead the code appears to be left
over from what was jumbled together in the Tiger days, so it does work in some cases but far from all.
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7.2.3 Translating phi instructions

Another irregular instruction is the phi instruction representing the Φ-functions. Their intended purpose
is to copy data from whichever predecessor node was executed. As opposed to the other instructions that
are only concerned with transferring the current state to another, this operation needs to concern itself with
what was executed immediately prior. Fortunately there is no need to further complicate the scenario with
additional state for the past executed block, as simply moving from assign[bi] to assign[a] immediately prior
to branching into the block whose header contains a phi node of the form (3) will suffice.

1 define i32 @main (i32 %0) {
2 1:
3 %2 = icmp sgt i32 %0, 0
4 br i1 %2, label %3, label %9
5 3:
6 %4 = phi i32 [%0, %1], [%7, %3]
7 %5 = phi i32 [0, %1], [%6, %3]
8 %6 = add i32 %5, %0
9 %7 = sub i32 %4, 1

10 %8 = icmp ugt i32 %7, 0
11 br i1 %8, label %3, label %9
12 9:
13 %10 = phi i32 [0, %1], [%6, %3]
14 ret i32 %10
15 }

Figure 43: cat tests/square0.ll

1 _main$3:
2 # ...
3 # br i1 %8, label %3, label %9
4 movq %rdx, %rax
5 cmpq $0, %rax
6 movq %rbx, %rax
7 movq %rax, %rdx
8 je _main$9
9 movq %rsi, %rax

10 movq %rax, %rsi
11 movq %rbx, %rax
12 movq %rax, %rdx
13 jmp _main$3
14 _main$9:
15 # ...

Figure 44: dune exec build -- -t x86

Notice for instance Figure 43 which has three phi nodes: two in block 3 and one in block 9, i.e. %0 needs to
be copied to %4 when control is transferred from block 1 and %7 when transferred from block 3. Likewise the
immediate value $0 must be copied to %5 when transferred from block 1 and %6 when transferred from block
3. All of the relevant translation can be seen in the fragment on Figure 44. After the comparison operation
on lines 4-6 that check if the boolean condition of %2 is nonzero and setting FLAGS register accordingly,
$0 is moved into assign[%1] in preparation of transferring to _main$9 if the zero flag indeed is set. If
not, execution is continued in which case both assign[%6] and assign[%7] are moved into assign[%4] and
assign[%5] respectively, in preperation for continuing execution at _main$3.

As mov operations do not change the FLAGS register [18], having mov instructions between the branching
instructions of je and jmp do not affect the branching. Likewise, because of the use[n] semantics of Φ-
functions, all bi are in interference in one another, so may not be overwritten by the movs inserted.

One particularly nasty oversight that was discovered a couple of days prior to handin stems from phi movs
overwriting each other. Consider Figure 45 where two phi instructions either move %6 to label %10 or
%7 to label %5 depending on the condition. In some cases, even in greedy where each variable is assigned
their own discrete register, their respective values are overwritten. This is due to %7 being moved to %6
prior to potentially branching back to label %5. If phi moves are conducted unconditionally of branch
condition %9, the value of %6 prior to branching to label %10 is overwritten on the off-chance of returning
to label %5, causing the value assigned to %11 and returned on line 10 to always be equal to %7 instead
of the intended %6.
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1 ; ...
2 5:
3 %6 = phi i32 [%7, %5], [1, %3]
4 %7 = add i32 %6, 1
5 %8 = mul i32 %7, %7
6 %9 = icmp sgt i32 %8, %0
7 br i1 %9, label %10, label %5
8 10:
9 %11 = phi i32 [%0,%11 = phi i32 [%0, %1], [0, %3], [%6, %5] %1], [0, %3], [%6, %5]

10 ret i32 %11
11 }

Figure 45: cat tests/sqrt1.ll

1 # ...
2 # br i1 %9, label %10, label %5
3 movq %r10, %rax
4 cmpq $0, %rax
5 movq %r8, %rax
6 movq %rax, %rdi
7 je _isqrt$5
8 movq %rdi, %rax
9 movq %rax, %r11

10 jmp _isqrt$10
11 # ...

Figure 46: buiild -- -t x86

This was resolved by relying on conditional movs immediately prior to the conditional branch (i.e. je).
Specifically, the cmoveq instruction was used, which only moves from source to destination if the equality
flag (i.e. ZF) is set. Unfortunately the cmoveq instruction doesn’t support indirect addressing, so in order
to support spilled variables both the values need to be moved into registers as can be seen in Figure 48.

1 # ...
2 # br i1 %9, label %10, label %5
3 movq %rdx, %rax
4 cmpq $0, %rax
5 movq %rbx, %rax
6 cmoveq %rax, %rsi
7 je _isqrt$5
8 movq %rsi, %rax
9 movq %rax, %rdx

10 jmp _isqrt$10
11 # ...

Figure 47: buiild -- -t x86

1 # ...
2 # br i1 %13, label %14, label %9
3 movq -88(%rbp), %rax
4 cmpq $0, %rax
5 movq -72(%rbp), %rax
6 movq -16(%rbp), %rcx
7 cmoveq %rax, %rcx
8 movq %rcx, -16(%rbp)
9 je _main$9

10 movq -16(%rbp), %rax
11 # ...

Figure 48: buiild -- -n 0 -t x86

7.2.4 Translating terminators

As for implementing terminators, the simplest is unreachable, as this literally doesn’t evaluate to anything.
Next is ret, which is more involved, in that it needs to concern itself with calling conventions. Although these
are fairly straight forward, especially since functions generally apply the same operations in the prologue
by pushing all callee-saved registers to the stack and then, occasionally, subctracting the amount of spilled
variables from %rsp. The function epilogue doesn’t have to concern itself with the number of spilled variables
though, as the stack pointer is saved to %rbp and simply restored from that. The return value (if specified)
is moved to the return register which is %rax according to the System V AMD64 ABI [13, p. 26].

When it comes to branching, whether conditional or not, the phi nodes need to be considered. As
explained in 7.2.3, the purpose of phi instructions is to ensure values are moved into assigned registers imme-
diately before branching, hence phi nodes are looked up and inserted before jmp instructions. Unfortunately
this wasn’t taken into account for switch instructions, but should be fine for both br instructions.

7.3 Assessing Correctness
It is difficult to assert the correctness of a compiler. While writing simple unit tests is easy, guaranteeing the
correctness of code generated for any given input is on a different order of magnitude in terms of complexity.

Validating the correctness of each instruction translation is a complicated task given how low-level it is.
One approach is attaching a debugger and examining the state before and after the translated sequence of
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x86 instructions is executed. The result of applying a binary operation, for instance, should only affect the
assigned register. Another is an extensive test suite, although achieving 100% coverage is unrealistic.

7.4 Test suite/framework
The test suite is quite extensive although not anywhere close to complete. Some tests have been handwritten
during development, mostly meant to assert one specific feature (unit tests), but others are also inteded to
assert them working together (integration tests). Some of them are hand written (simple ones), others are
based on the output of clang -S -emit-llvm stripped with the the strip utility in bin/strip.ml, and
lastly some are generated with Python scripts to parameterize certain properties (e.g. long move-chains,
many operations). In addition to this some are copied from other projects In addition to my own cases and
other programs from the internet (attributed in the file header), some cases from the LLVM test suite are
also used. The structure of the test suite repository has a directory of so-called ’single source’ C programs
totalling to 2113. Of these only 1222 compiled successfully with clang -S -emit-llvm and of these only
624 parsed successfuly with the strip utility, of which 425 compiled successfully. In addition to these there
are also the test suite used throughout Tiger development, most of which were provided by the compilers
lecturers, as well as some LLVM snippets from the Dolphin compiler.

The testing framework is roughly based on the build system that came with the Tiger development
environment. It is based on a collection of files that can be compiled and executed on their own. Each
of these are enumerated in the test runner (bin/testrunner.ml) with parameters associated. Each of
these are then compiled with the clang compiler and executed, capturing all the relevant output, which is
stdout and exit code. After this, the same test file is compiled for each of the allocators. The executables
generated are then also executed, also storing the output data. All test cases are deterministic and will be
halted by configurable timeout at some point. This is necessary because tests can easily end in an infinite
loop because of erroneous translation. As each of these halt or time out, their output is compared to what
was output from executables generated by the ’correct’ compiler of clang. Though testing the outputs of
several stages much like the Tiger compiler from the compilers course, this wasn’t realized in time. All of
the test entries in bin/testrunner.ml were either working at one point and the result of a regression or
it was a work in progress that wasn’t realized in time either. Except the 2̃0% of the LLVM test suite that
were never working.

7.4.1 Debug Harness

A more elaborate way of asserting correctness of translation is to assert that there are no effects except for
those intended. One way of achieving this is to check if a sequence of x86 instructions representing a single
LLVM-- operation change any values except those expected. An approach to this is to insert a breakpoint
before every LLVM-- instruction, then attach a debugger that breaks on these, and ensure that only the
intended registers are altered.

To achieve this, only a few changes need to be made to the codebase. A debug flag is introduced, which
inserts a label before every instruction by adding a Breakpoint variant of the ins type before the assembly
emitted of that specific operation. A unique identifier as well as a list of changes expected to be made is
encoded. This includes a bitmask of GPRs that can possibly be changed (aside from the scratch registers
of course) as well as which parts of the stack may be modified. In addition to this, each of the labels are
output with a .globl directive in the file header. A file is built with these extra symbols using the -d flag.

Unfortunately, this was never made to work in practice, but the harness.py script is attached regard-
less. It was made and tested with clang16 in mind on Linux.

8 Evaluation

While there are many approaches to assessing the quality of translation, one of the primary means is to
simply measure the time taken to execute the code generated. Assuming the translation is sound given
the previous steps taken to validate correctness in translating LLVM-- to x86, it is a solid foundation for
future optimizations. While there are certainly other factors worth measuring, only runtime performance is
considered for this project.
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8.1 Benchmarking
Since the target architecture is x86-64, all benchmarks are executed natively on the fastest processor available
to be used consistently at the time of writing. This is to maximize the sample size and in turn reduce
uncertainty, but the clock speed at which the benchmarks are performed is irrelevant to how fast the generated
code is. Because of this, the metric recorded is the amount of CPU cycles spent executing from start to
finish instead of actual time in seconds, as the time measure only works as a more imprecise estimate of the
amount of underlying work/execution steps performed on the processor.

CPU cycles isn’t a perfect measurement either, but it works to eliminate the clock speed as well as
negate much of the time the scheduler allocates for other processes. Scheduling still has a negative impact
on execution because of the cache misses caused by context switching, but outside of executing each program
in immediate mode (which isn’t possible on Linux or macOS) this is a sensible estimate. To further reduce
context switching, benchmarks are made on a fresh restart with minimal processes running (Xorg etc.).

Additionally, all benchmarks are deterministic, meaning relevant values at all points across all runs are
consistent. So while not completely equivalent due to address randomization, such noise should never leak
to value space, and assuming values allocated are initialized before use, no remnants from other processes
should leak to value space either. This means that the cycles measured over infinitely many runs will converge
towards a ’perfect’ run with no cache misses as caused by context switching. Although realistically this will
never happen in a lifetime, across n runs the run least affected by context switching will be the one with the
least CPU cycles measured, so is the one most representative of the actual performance without noise.

Measurements are made with the perf utility, which relies on the hardware counters (HC) registers
of modern microprocessors, which are special purpose registers meant to record performance data during
execution. Because the analysis is integrated into the chip on which it is executing, very little overhead is
incurred, and is therefore the go-to for estimating native performance on Linux. The perf subcommand is
used, as it starts a process and attaches from the very beginning, in addition to padding a -e flag specifying
that only cycles are meant to be recorded and the -x flag to help parse the output. Both min, avg and max
are tracked and reported but only min are represented in the matrices below.

Some of the .ll file present in the benches directory are listed here in a table denoting the input
paramater on the left column and type of allocator used. The data measured is extracted from the perf
as mentioned above. This is done in bin/bench.ml which also contains the commands and parameters to
execute each benchmark.

All benchmarks are performed on a Ryzen 9 5900x.

8.1.1 benches/fib.ll

The ’dumb’ fib is a very naive approach to finding the nth number of the Fibonacci sequence by calling itself
recursively twice (decrementing n before each), which causes an exponential growth in function calls.

arg(s) clang simple 12 simple 2 briggs 12 briggs 2 linear greedy 12 greedy 0
8 139964 1.00041x 0.98897x 1.00518x 1.00397x 0.99405x 1.00683x 1.02014x
10 141471 1.00025x 1.00662x 1.00701x 1.01013x 1.01107x 0.99899x 1.03276x
12 143729 1.01286x 1.00840x 1.02403x 0.97714x 1.00222x 1.02376x 1.03188x
14 152717 1.00032x 1.03967x 1.03472x 1.03637x 1.02969x 1.03224x 1.17572x
16 173395 1.08069x 1.05265x 1.08045x 1.08271x 1.06793x 1.06925x 1.40948x
18 227988 1.15964x 1.15565x 1.16758x 1.16818x 1.16349x 1.16611x 1.80801x
20 375309 1.24200x 1.23989x 1.24662x 1.24412x 1.24000x 1.24497x 2.26177x
22 760328 1.30708x 1.31289x 1.31045x 1.31230x 1.30795x 1.30885x 2.63144x
24 1763965 1.35080x 1.35029x 1.35039x 1.35129x 1.35274x 1.35185x 2.83868x
26 4321515 1.38984x 1.39041x 1.38939x 1.39050x 1.39175x 1.39096x 2.98115x
28 11291147 1.37185x 1.37282x 1.37280x 1.37369x 1.37371x 1.37320x 2.96675x
30 28225827 1.42877x 1.42993x 1.42896x 1.43085x 1.43172x 1.43069x 3.09771x
32 73749658 1.43033x 1.42973x 1.42936x 1.42954x 1.43088x 1.42974x 3.10158x

Table 4: Benchmark of benches/fib.ll output by dune exec bench -- -f fib -n 1024
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The measures in Table 4 are remarkably similar to one another, with all allocators (except greedy 0) seeming
to converge towards being 37% slower than Clang. This isn’t particularly surprising, as the x86 translation is
more concerned with preserving callee saved registers than necessary in pushing each and every one despite
not being in use. Also, instead of pushing with the push instruction it would be faster to simply subtract
from the %rsp register directly and using mov instead.

What’s more interesting and related to the allocation is the fact that greedy 0 is more than twice as
slow. This is presumably because the fib function that has 7 variables can assign each of them to a register
for the first six allocators listed. However, the last one (greedy 0), has no assignable registers, so it must
necessarily start spilling from the very beginning. To elucidate this hypothesis, the same benchmark was
performed but only for the greedy of decreasing k assignable registers as well as the Tiger compiler which
has the same approach to spilling every variable prematurely and can be seen in Table 5:

arg(s) clang greedy 12 greedy 8 greedy 6 greedy 4 greedy 2 greedy 1 greedy 0 tiger
8 139813 0.99868x 1.00816x 1.00434x 1.00410x 1.01222x 1.00127x 1.01345x 1.01526x
10 141482 0.99391x 1.01001x 1.01231x 1.01469x 1.00529x 1.02271x 1.03397x 1.02248x
12 145091 1.00774x 0.99627x 1.01584x 1.01047x 1.01694x 1.07056x 1.06622x 1.04396x
14 149598 1.06186x 1.06462x 1.06184x 1.06665x 1.08504x 1.20101x 1.20679x 1.14215x
16 170028 1.09372x 1.09738x 1.12226x 1.13603x 1.15900x 1.42535x 1.43162x 1.29614x
18 230073 1.15757x 1.15498x 1.17517x 1.21433x 1.25770x 1.73753x 1.79427x 1.51243x
20 376308 1.24275x 1.24539x 1.28023x 1.35349x 1.41074x 2.22527x 2.26082x 1.81290x
22 762044 1.30899x 1.30974x 1.35873x 1.45410x 1.52442x 2.57640x 2.62467x 2.05193x
24 1765499 1.34932x 1.34929x 1.40559x 1.51369x 1.59160x 2.78143x 2.83690x 2.18519x
26 4399288 1.36595x 1.36628x 1.42456x 1.53853x 1.62035x 2.87046x 2.92749x 2.24179x
28 11290936 1.37293x 1.37379x 1.43301x 1.54853x 1.63198x 2.90889x 2.96589x 2.27035x
30 28716847 1.40466x 1.40503x 1.46656x 1.58655x 1.67357x 2.98560x 3.04538x 2.32981x
32 76582019 1.37696x 1.37647x 1.43704x 1.55462x 1.64074x 2.92847x 2.98745x 2.28358x

Table 5: Benchmark of benches/fib.ll output by dune exec bench -- -f fib -n 1024

While it’s not a complete one to one in terms of runtime as the Tiger compiler seems to perform slightly
better than Greedy 0 (by ~30% or so), that does make sense as there are marginally more instructions
involved with each operation, not to mention the extra care taken to ensure calling conventions are upheld.

8.1.2 benches/loopn.ll

Another simple example is a program that only consists of a loop running for n iterations. These stem from
the tests/loopn.c file but with the call to printf removed such that no unnecessary time is spent doing
I/O. Depending on the level of optimization chosen, either the mutation strategy of stack allocated variables
or phi nodes are used. For the case of using the stack, the simplicity of such a program shines through as
can be seen on Table 6:

arg(s) clang simple 12 simple 2 briggs 12 briggs 2 linear 12 linear 2 greedy 12 greedy 0
1048575 2238539 2.56041x 2.63938x 2.56101x 2.63915x 2.56111x 19.26926x 27.70065x 36.60162x
2097151 4333585 2.61339x 2.69416x 2.61334x 2.69427x 2.61352x 19.87471x 28.58590x 37.78097x
4194303 8529189 2.63937x 2.72120x 2.63934x 2.72124x 2.63938x 20.17961x 29.03173x 38.37560x
8388607 16919352 2.65269x 2.73526x 2.65275x 2.73534x 2.65264x 20.33697x 29.26211x 38.68258x
16777215 33697415 2.65966x 2.74260x 2.65966x 2.74263x 2.65964x 20.41817x 29.39601x 38.84065x
33554431 67254339 2.66311x 2.74627x 2.66312x 2.74628x 2.66311x 20.45872x 29.46374x 38.91968x
67108863 134365449 2.66491x 2.74816x 2.66488x 2.74816x 2.66492x 20.47947x 29.49845x 38.96011x

Table 6: Benchmark of benches/factori64.ll output by dune exec bench -- -f factori32 -n 1024

Despite having no optimizations enabled and using the stack to store the counter, clang manages to build
an executable wherein the loop consists of no more than 7 instructions (see Figure 49). In comparison, mine
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is 19 (see Figure 50):

# ...
movslq 0xc(%rsp),%rax
cmp 0x10(%rsp),%rax
jae 0x1199 <main+89>
mov 0xc(%rsp),%eax
add $0x1,%eax
mov %eax,0xc(%rsp)
jmp 0x1179 <main+57>
# ...

Figure 49: clang

# ...
movq %rsi, %rax
movl (%rax), %eax
movq $0, %rdx
movl %eax, %edx
movq %rdx, %rax
movq $0, %rbx
movl %eax, %ebx
movq %rdi, %rax
movq (%rax), %rax
movq %rax, %rdx

# continued...
movq %rbx, %rax
movq %rdx, %rcx
cmpq %rcx, %rax
movq $0, %rdx
setb %dl
movq %rdx, %rax
cmpq $0, %rax
je _main$20
jmp _main$17
# ...

Figure 50: build -- -t x86

It does make sense that my compiler nearly takes 3x as many cycles considering that nearly 3x as many
instructions are being executed. Because of the way values are stored, there is literally no benefit from
Briggs coalescing since no phi nodes are involved ever. I was surprised to see Greedy and Linear 2 to be
that much slower, but on second thought it makes perfect sense since loading variables from the stack before
every single arithmetic/logic operation is considerably slower. What’s more surprising is the fact that Tiger
is nearly 4x faster than any Greedy (see Table 7). It’s presumably just because all binary operations consist
of about three instructions or so.

arg(s) clang greedy 12 greedy 8 greedy 6 greedy 4 greedy 2 greedy 1 greedy 0 tiger
1048575 2237215 27.71735x 36.15447x 36.62296x 36.62342x 36.62283x 36.62360x 36.62324x 10.97018x
2097151 4334414 28.58063x 37.28996x 37.77377x 37.77391x 37.77373x 37.77353x 37.77356x 11.29302x
4194303 8529224 29.03182x 37.88371x 38.37535x 38.37541x 38.37546x 38.37544x 38.37543x 11.46122x
8388607 16919774 29.26144x 38.18576x 38.68170x 38.68169x 38.68175x 38.68169x 38.68163x 11.54653x
16777215 33698040 29.39364x 38.34210x 38.83996x 38.83997x 38.83991x 38.83995x 38.83993x 11.59127x
33554431 67253512 29.46538x 38.42125x 38.92015x 38.92019x 38.92020x 38.92016x 38.92020x 11.61419x
67108863 134364289 29.49788x 38.46111x 38.96041x 38.96050x 38.96052x 38.96043x 38.96040x 11.62584x

Table 7: Benchmark of benches/loopn0.ll output by dune exec bench -- -f loopn0 -n 64

Even with -O1 where phi nodes are introduced, does the Briggs allocator seem to affect anything as can be
seen in Table 8. This is because the only two variables eligible for coalescing, %9 and %10, are in interference
as both are used at intersecting program points.

arg(s) clang simple 12 simple 2 briggs 12 briggs 2 linear 12 linear 2 greedy 12 greedy 0
131071 401485 1.65252x 1.65413x 1.65379x 1.65354x 1.65376x 1.65265x 1.63694x 8.19401x
262143 663679 1.79023x 1.79079x 1.78950x 1.79092x 1.78914x 1.78887x 1.79096x 9.69501x
524287 1188029 1.88330x 1.88252x 1.88192x 1.88240x 1.88242x 1.88211x 1.88284x 10.79175x
1048575 2237256 1.93727x 1.93740x 1.93674x 1.93715x 1.93728x 1.93739x 1.93690x 11.42118x
2097151 4334546 1.96774x 1.96724x 1.96767x 1.96746x 1.96749x 1.96756x 1.96753x 11.81912x
4194303 8529268 1.98350x 1.98348x 1.98353x 1.98339x 1.98339x 1.98358x 1.98355x 12.04037x
8388607 16918996 1.99159x 1.99166x 1.99166x 1.99160x 1.99166x 1.99165x 1.99162x 12.13501x

Table 8: Benchmark of benches/loopn1.ll output by dune exec bench -- -f loopn1 -n 64
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8.1.3 benches/phis.ll

To actually see the benefit of coalescing in action I have introduced some generated tests of benches/phis{0-7}.ll.
Generated with benches/phis.py <n> <m> that produces a .ll file that consists of a loop hardcoded
for n repetitions with m phi nodes.

phis clang simple 12 simple 2 briggs 12 briggs 2 linear 12 linear 2 greedy 12 greedy 0
0 1073928603 2.49981x 2.49981x 1.24997x 1.24997x 2.49981x 2.49982x 2.49981x 11.68360x
1 1073928952 2.54982x 2.60344x 1.49994x 1.49994x 2.49981x 2.49983x 2.54981x 11.58368x
2 1610830251 1.75897x 1.99991x 1.16665x 1.33330x 1.66660x 1.66663x 1.75644x 8.40916x
3 2147723548 1.74997x 1.87495x 1.05002x 1.06250x 1.24999x 1.49997x 1.53576x 6.64460x
4 2684621503 1.40001x 1.79998x 1.00000x 1.00000x 1.00000x 1.29999x 5.43928x 5.99128x
5 3221532192 1.49997x 1.83329x 1.00000x 1.00000x 0.99999x 1.24999x 4.60720x 5.82084x
6 3758430778 1.35714x 1.78839x 0.88572x 0.90478x 0.85715x 1.21428x 4.10980x 5.54983x
7 4295303796 1.50000x 1.81439x 0.87500x 0.87502x 0.87500x 1.18750x 3.62761x 4.84205x

Table 9: Benchmark of benches/phis{0..7}.ll output by dune exec bench -- -f phis -n 16

8.1.4 benches/factori32.ll

Integer factorization is another interesting algorithm. Generally considered to be NP, here are the results of
factorizing known primes of increasing bit size seen in Table 10

arg(s) clang simple 12 simple 2 briggs 12 briggs 2 linear 12 linear 2 greedy 12 greedy 0
16777213 168400 1.04991x 1.02776x 1.04829x 1.04435x 1.04465x 1.82795x 2.31432x 2.32746x
33554393 175723 1.06090x 1.03777x 1.06480x 1.04465x 1.03702x 2.12225x 2.78015x 2.79323x
67108859 185913 1.05642x 1.08067x 1.08352x 1.07946x 1.08349x 2.50046x 3.38055x 3.39737x
134217689 199433 1.11084x 1.11393x 1.08952x 1.11192x 1.10441x 2.97084x 4.13960x 4.12783x
268435399 217520 1.14321x 1.15268x 1.13781x 1.15059x 1.15174x 3.56567x 5.06899x 5.10944x
536870909 242651 1.19742x 1.19637x 1.18878x 1.19987x 1.19055x 4.25606x 6.18250x 6.21937x
1073741789 282883 1.23359x 1.23140x 1.23124x 1.21433x 1.23208x 4.93689x 7.23489x 7.31718x

Table 10: Benchmark of benches/factori32.ll output by dune exec bench -- -f factori32 -n 1024

What’s more interesting is that increasing the input size actually reduces the discrepancy with the Greedy
and Linear 2 allocators, while all others seem to rise at the same pace as can be seen in Table 11.

arg(s) clang simple 12 simple 2 briggs 12 briggs 2 linear 12 linear 2 greedy 12 greedy 0
268435399 218872 1.06367x 1.10706x 1.06818x 1.10527x 1.10276x 1.63497x 2.38428x 2.38607x
536870909 246634 1.08777x 1.12660x 1.08040x 1.13337x 1.13368x 1.79734x 2.73281x 2.74118x
1073741789 285516 1.09813x 1.16160x 1.10120x 1.16364x 1.16724x 1.97253x 3.11594x 3.12868x
2147483647 340871 1.12733x 1.19431x 1.12500x 1.19348x 1.18683x 2.15246x 3.49642x 3.51766x
4294967291 419568 1.14194x 1.21527x 1.14432x 1.21632x 1.22207x 2.32057x 3.87806x 3.89161x
8589934583 529755 1.16337x 1.24534x 1.16161x 1.24781x 1.25015x 2.47971x 4.22521x 4.22809x
17179869143 682438 1.18197x 1.28018x 1.18192x 1.27765x 1.27933x 2.63014x 4.54643x 4.56048x
34359738337 907751 1.18869x 1.28923x 1.18944x 1.29097x 1.28925x 2.72756x 4.76366x 4.77551x

Table 11: Benchmark of benches/factori64.ll output by dune exec bench -- -f factori64 -n 1024

8.1.5 benches/sieven.ll

Sticking to the subject of primes, the Sieve of Eratosthenes is another popular benchmark for gauging
runtime performance [19, pp. 243–244]. It is a simple algorithm for generating primes that rely on a runtime
allocated array of booleans where the ith entry represents the primality of i. This benchmark ought to cover
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nested loops and other branching, and as expected the graph coloring based allocators seem to outperform all
others. Remarkably Greedy 12 is almost the same as Greedy 0, but this is probably because most operations
are performed on an array, for which register assignment has no influence.

arg(s) clang simple 12 simple 2 briggs 12 briggs 2 linear 12 linear 2 greedy 12 greedy 0
128 157871 1.00777x 1.01034x 1.00764x 1.01089x 1.05785x 1.16044x 1.24422x 1.24352x
256 162153 0.98003x 1.02047x 1.01174x 1.02203x 1.11154x 1.31965x 1.49736x 1.50711x
512 168660 1.02724x 1.04284x 1.03418x 1.04433x 1.22076x 1.61297x 1.97437x 2.03639x
1024 186641 1.02816x 1.05324x 1.04300x 1.05647x 1.38383x 2.15658x 2.77549x 2.89126x
2048 219043 1.07644x 1.10227x 1.07577x 1.10024x 1.65644x 3.04685x 4.07178x 4.24534x
4096 286355 1.11926x 1.15395x 1.11675x 1.15387x 2.00116x 4.19594x 5.76251x 6.03484x
8192 421739 1.15807x 1.20870x 1.15821x 1.20849x 2.36226x 5.43577x 7.57708x 7.91676x
16384 692242 1.19241x 1.25460x 1.19587x 1.25348x 2.66022x 6.50741x 9.15450x 9.54856x

Table 12: Benchmark of benches/sieven.ll output by dune exec bench -- -f sieven -n 1024

8.1.6 benches/sha256.ll

The sha256 benchmark is a massive program when compared to all others. It stems from an MIT licensed
implementation [20]. The core function is sha256_compress with no loops, but it does perform 64 SHA-2
rounds which are quite involved by design. As most binary operations depend on five or so instructions
instead of 1-2 as is possible for the majority, that alone ought to reduce performance immensely.

arg(s) clang simple 12 simple 2 briggs 12 briggs 2 linear 12 linear 2 greedy 12 greedy 0
4 151231 1.24623x 1.28026x 1.24897x 1.28066x 1.85133x 1.88049x 3.00814x 3.02968x
8 159289 1.41012x 1.45279x 1.41295x 1.44789x 2.42693x 2.46595x 4.38812x 4.40305x
16 173067 1.70848x 1.76986x 1.70898x 1.77111x 3.45499x 3.49756x 6.88402x 6.88614x
32 202474 2.15587x 2.25675x 2.14418x 2.26214x 5.03392x 5.12076x 10.69747x 10.70125x
64 256682 2.78746x 2.95124x 2.79279x 2.95499x 7.25491x 7.39688x 16.05447x 16.05908x
128 369901 3.45784x 3.67742x 3.45438x 3.67655x 9.56947x 9.78032x 21.68320x 21.71900x
256 598859 4.01075x 4.27823x 4.01290x 4.27501x 11.53833x 11.80069x 26.47159x 26.47409x
512 1054540 4.40890x 4.70502x 4.40897x 4.70366x 12.93893x 13.22190x 29.86374x 29.85531x
1024 1989472 4.59073x 4.90795x 4.59569x 4.90336x 13.62511x 13.93164x 31.53197x 31.56367x
2048 3831949 4.73191x 5.05794x 4.73420x 5.05587x 14.10539x 14.41266x 32.69551x 32.72633x
4096 7524589 4.80394x 5.13065x 4.80706x 5.13594x 14.33546x 14.66333x 33.25560x 33.30167x
8192 14901775 4.84418x 5.18112x 4.84423x 5.18259x 14.46452x 14.78932x 33.58380x 33.61478x

Table 13: Benchmark of benches/sha256.ll output by dune exec bench -- -f sha256 -n 256

8.2 Future work
It goes without saying that there are countless optimizations waiting to be made, but as the goal of this
project was to explore the different approaches, not many regards were had for the instruction selection
itself. In fact, much more concern was taken for making sure each instruction was translated such that no
other live variables were affected. The call instruction alone is probably a whole order of magnitude slower
than necessary. Likewise, the function pre-/epilogue are also overly cautious.

Certainly, the selection of benchmarks could also have been broader, with the vast majority just showing
how Greedy is considerably slower. Not to mention more benchmarks with support for the Tiger compiler that
was written the year prior. Likewise, some more detailed profiling of the entire compilation would have been
interesting. Some short descriptions of time taking during certain phases are included (see Figure 12 and 32)
although a far more detailed report could have been made with instrumentation frameworks like Landmarks
[21] as the time spent during compilation is quite significant, particularly for runtime environments that
depend on JIT, but also for AOT compilers as long compile times can negatively affect productivity.
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As for the liveness analysis, research has been conducted allowing for liveness analysis to be performed
over IR of strict SSA form in only two passes [22] shadowing the current approach that depends on iterative
dataflow analysis. Similarly, linear scan can be aware of ’holes’ in live ranges such that variables don’t need
to live across widely disjointed basic blocks [23].

9 Conclusion

The intended goal of this project has been to implement both the graph coloring and linear scan algorithms
and evaluate them both in terms of benefits and drawbacks when used to compile LLVM-- IR to x86 assembly
and, where applicable, compare it to the Tiger compiler developed as the primary project during the 2022
compilers course. At first, control flow analysis was implemented to generate a control-flow graph. As this
was nearing completion, the different types of allocators were considered. At first the Greedy allocator was
implemented, as this is the simplest one and happens to be the one closest to the Tiger compiler. As every
variable is assigned its own register/stack slot, no liveness analysis needs to be performed prior to assignment.
Then work towards an overly cautious instruction selection began, that would translate a sound sequence of
x86 instructions regardless of assignment.

In the meantime, a testing framework was being developed that was intended to compile and execute
existing LLVM-- programs and compare their output to the expected output of the clang compiler, the
output of which has been presumed to be correct. As soon as this was in a somewhat working state, work
began on the core of this project: the different sorts of allocators. Both graph coloring and linear scan rely
on dataflow analysis which was implemented to derive live ranges for each variable. Some observations were
made about the expected runtime of dataflow analysis, after which work began on the graph coloring by
simplification as explained in both the Appel and Aho et. al. texts.

Then benchmarks and performance of the different approaches were starting to enter the picture, with
the graph coloring already showing to be a considerable improvement when compared with the Greedy
allocators, especially when they had no available registers to assign and, much like the Tiger compiler, had
to depend on the stack entirely. As the the work on graph coloring was nearing completion, one of the
coalescing strategies of the Appel text was also implemented. The resulting Briggs allocator was found to
have surprisingly marginal influence on runtime, with only benchmarks written to demonstate the exact
benefits showing any improvement.

With the end of the year approaching fast, the linear scan approach was also implemented. Linear scan
is most often used in contexts where the compile-time is critical, so the desired time spent compiling needs
to be considerably less when compared to graph coloring. This fortunately turned out to be the case, as
the time spent compiling comparatively large programs such as sha256 were about 1/3 of graph coloring in
terms of compile time and was able to keep up with the Greedy allocator despite showing performance gains
for the majority of benchmarks.

In the end, the caution taken during instruction selection has definitely been the source of the majority
of performance regression when compared to the Tiger compiler, with some benchmarks being upwards of
4x slower, despite fundamentally working with the same assignments. The Simple and Briggs allocators
were generally only between 1-2x slower than that of clang, with some approaching 5x. The linear scan
was surprisingly able to keep up fairly well, but in the case of deep repetition with variables defined early
spanning the entire breadth of the loop, and accessed several times within, were considerably slower.

In conclusion, one would not stand to benefit much from reimplementing a well established compiler
backend such as LLVM, as the sheer time spent in development means that a far broader set of corner cases
are accounted for. Though some execution environments seek different approaches other than the rigorous
amount of optimizations made at compile-time to benefit runtime performance and vice versa.
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